一、三角函数的特殊值表?
sin
sin0°=sin0=0
sin15°=sin
=
≈0.2588190451
sin22.5°=sin
=
≈0.3826834324
sin30°=sin
=
=0.5
sin45°=sin
=
≈0.7071067812
sin60°=sin
=
≈0.8660254038
sin67.5°=sin
=
≈0.9238795325
sin75°=sin
=
≈0.9659258263
sin90°=sin
=1
sin180°=sin
=0
sin270°=sin
=-1
sin360°=sin
=0
cos
cos0°=cos0=1
cos15°=cos
=
≈0.9659258263
cos22.5°=cos
=
≈0.9238795325
cos30°=cos
=
≈0.8660254038
cos45°=cos
=
≈0.7071067812
cos60°=cos
=
=0.5
cos67.5°=cos
=
≈0.3826834324
cos75°=cos
=
≈0.2588190451
cos90°=cos
=0
cos180°=cos
=-1
cos270°=cos
=0
cos360°=cos
=1
tan
tan0°=tan0=0
tan15°=tan
=
≈0.2679491924
tan22.5°=tan
=
≈0.4142135624
tan30°=tan
=
≈0.5773502692
tan45°=tan
=1
tan60°=tan
=
≈1.7320508076
tan67.5°=tan
=
≈2.4142135624
tan75°=tan
=
≈3.7320508076
tan135°=tan
=-1
tan180°=tan
=0
tan225°=tan
=1
tan315°=tan
=-1
tan360°=tan
=0
特殊三角函数值表
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
α=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
二、三角函数特殊值表概念?
三角函数特殊值,一般指特殊三角函数值,一般指在0,30°,45°,60°,90°,120°,150°,180°等角下的正余弦值、正切值等。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。
2三角函数诱导公式有哪些
特殊角的三角函数值,一般都以正角的来记忆。
6分之π的正弦值=1/2=3分之π的余弦值=cos60°,(下略)。
4分之π的正弦值=根号2/2=4分之π的余弦值。
3分之π的正弦值=根号3/2=6分之π的余弦值。
2分之π的正弦值=1= 0的余弦值。
6分之π的正切值=根号3/3=3分之π的余切值。
4分之π的正切值=1=4分之π的余切值。
3分之π的正切值=根号3=6分之π的余切值。
大于90度(2分之π)的记法,由诱导公式得到的来记忆。
负数(也就是负角)的三角函数值,也由诱导公式得到的来记忆。
三、锐角三角函数特殊值表?
锐角三角函数特殊值表:
1.特殊角三角函数值:sin0=0;sin30=0.5;sin45=0.7071;sin60=0.8660二分之根号3;in90=1;cos0=1;cos30=0.866025404,二分之根号3。
2.常见的锐角三角函数值如下:
1、sin 30°= 1/2,cos30°=√3/2,an30°=√3/3
2、sin45°=cos45°=√2/2,tan45°=1
3、sin60°=√3/2,cos60°=1/2,tan60°=√3
常见的锐角三角函数值的推断方法:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα,sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα。
四、三角函数非特殊角值表?
求非特殊角的函数值,只有通过查三角函数的表来得到.
特殊角的三角函数值
SIN30=1/2 COS30=√3/2 TAN30=√3/3
sin60=√3/2 cos60=1/2 tan60=√3
sin45=√2/2 cos45=√2/2 tan45=1
sin90=1 cos90=0 tan90无意义
sin0=0 cos0=1 tan0=0
五、三角函数特殊值?
三角函数特殊值
特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
α=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
六、三角函数和反三角函数的特殊值表?
反三角函数的特殊值:
arcsin 1=pi/2
arcsin 0.5=pi/6
arcsin (二分之根二)=pi/4
arcsin (二分之根三)=pi/3
arcsin 0=0
arcsin -1=-pi/2
arccos 1=0
arccos 0.5=pi/3
arccos (二分之根二)=pi/4
arccos (二分之根三)=pi/6
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
七、倒三角函数特殊值?
倒三角函数的特殊值:
arcsin 1=pi/2
arcsin 0.5=pi/6
arcsin (二分之根二)=pi/4
arcsin (二分之根三)=pi/3
arcsin 0=0
arcsin -1=-pi/2
arccos 1=0
arccos 0.5=pi/3
arccos (二分之根二)=pi/
arccos (二分之根三)=pi/6
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
八、cot三角函数特殊值?
特殊角 cot30°= √3、cot45°=1、cot60°=(√3)/3、cot90°=0
cot是三角函数里的余切三角函数符号,此符号在以前写作ctg。cot坐标系表示:cotθ=x/y,在三角函数中cotθ=cosθ/sinθ,当θ≠kπ,k∈Z时cotθ=1/tanθ (当θ=kπ,k∈Z时,cotθ不存在)。角A的邻边比上角A的对边。作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数。
九、三角函数特殊值口诀?
口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.“
前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值。弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3。最后一句,讲的是各函数值中分子都加上根号,不能丢掉.这种方法有趣、简单、易记.
十、cos三角函数特殊值?
1、sin30°=1/2;sin30=-0.988;sin30°=cos60°=½
2、cos30=0.154;cos30°=√3/2
3、tan30=-6.405;tan30°=√3/3;tan30°=cot60°=(1/3)√3
4、sin45=0.851;sin45°=√2/2;sin45°=cos45°=½√2
5、cos45=0.525;cos45°=sin45°=√2/2;sin45°=cos45°=½√2
6、tan45°=cot45°=1;sin60°=cos30°=½√3
1、三角函数(Trigonometric Functions)是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
2、公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了